Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.810
Filtrar
1.
BMC Complement Med Ther ; 24(1): 175, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664646

RESUMEN

BACKGROUND: Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS: The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS: APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS: APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.


Asunto(s)
Diterpenos , Hemo Oxigenasa (Desciclizante) , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Células PC12 , Estrés Oxidativo/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal/efectos de los fármacos , Diterpenos/farmacología , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Hemo-Oxigenasa 1/metabolismo
2.
Sheng Li Xue Bao ; 76(2): 215-223, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658371

RESUMEN

This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.


Asunto(s)
Apoptosis , Hemo-Oxigenasa 1 , Hemina , Células Endoteliales de la Vena Umbilical Humana , Factor 2 Relacionado con NF-E2 , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Hemina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
3.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651136

RESUMEN

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Asunto(s)
Inflamación , Proteínas de la Membrana , Microglía , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Hemo-Oxigenasa 1/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Adyuvante de Freund , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Antiinflamatorios/química
4.
Biochem Pharmacol ; 223: 116193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582268

RESUMEN

Ovarian aging leads to infertility and birth defects. We aimed to clarify the role of Indole-3-carbinol (I3C) in resistance to oxidative stress, apoptosis, and fibrosis in ovarian aging. I3C was administered via intraperitoneal injection for 3 weeks in young or old mice. Immunohistochemistry; Masson, Sirius red, and TUNEL staining; follicle counting; estrous cycle analysis; and Western blotting were used for validating the protective effect of I3C against ovarian senescence. Human granulosa-like tumor cell line and primary granulosa cells were used for in vitro assay. The results indicated that I3C inhibited ovarian fibrosis and apoptosis while increasing the number of primordial follicles. Mechanistic studies have shown that I3C promoted the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2) and upregulated the expression of heme oxygenase 1 (HO-1). Additionally, I3C increased cell viability and decreased lactate dehydrogenase, malondialdehyde, reactive oxygen species and JC-1 levels. Furthermore, the antioxidant effect of I3C was found to be dependent on the activation of Nrf2 and HO-1, as demonstrated by the disappearance of the effect upon inhibition of Nrf2 expression. In conclusion, I3C can alleviate the ovarian damage caused by aging and may be a protective agent to delay ovarian aging.


Asunto(s)
Hemo-Oxigenasa 1 , Indoles , Factor 2 Relacionado con NF-E2 , Ratones , Femenino , Humanos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Fibrosis , Apoptosis
5.
Chem Biol Drug Des ; 103(4): e14518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570329

RESUMEN

Icariin has shown the potential to treat osteoarthritis (OA), but the specific mechanism still needs further exploration. Therefore, this study attempted to reveal the effect and mechanism of icariin on OA based on in vitro and in vivo experiments. In vivo, a mouse model of OA was established by cutting the anterior cruciate ligament, and 10 mg/kg icariin was given to mice orally. Then, the OA injury and pathological changes of cartilage tissue in mice were identified by OA index and hematoxylin and eosin staining. In vitro, the viability of C28/I2 cells incubated with different concentrations of icariin was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Subsequently, C28/I2 cells induced by IL-1ß were used as the cell model of OA, the expression of Sirtuin (SIRT)-1 in cells was knocked down, and icariin was added for intervention. Next, western blot was used to observe the expression level of sirtuin 1 (SIRT-1)-Nrf2-heme oxygenase 1 (HO-1) signaling pathway-related proteins in cells of each group. Besides, cell viability and apoptosis were detected by MTT and apoptosis assay, and DNA damage was observed by comet assay. In vivo experiments, intragastric administration of icariin could effectively reduce the OA index of mice, improve the pathological changes of cartilage tissue, and obviously activated the SIRT-1-Nrf2-HO-1 signaling pathway. In vitro experiments, icariin did not exhibit toxic effect on C28/I2 cells, but could activate the SIRT-1-Nrf2-HO-1 signaling pathway, improve the viability, reduce the level of apoptosis and relieve the DNA damage in OA cells; however, these effects were inhibited by si- SIRT-1. Icariin can improve the symptoms of OA by activating the SIRT-1-Nrf2-HO-1 signaling pathway.


Asunto(s)
Condrocitos , Flavonoides , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Hemo-Oxigenasa 1/metabolismo , Transducción de Señal , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Apoptosis
6.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38563333

RESUMEN

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Asunto(s)
Aminofenoles , Pérdida Auditiva , Ototoxicidad , Quinolonas , Humanos , Gentamicinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Calidad de Vida , Estrés Oxidativo , Apoptosis , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/farmacología
7.
Redox Rep ; 29(1): 2341537, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38629506

RESUMEN

BACKGROUND: Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS: Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS: Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1ß and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION: In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.


Asunto(s)
Antioxidantes , FN-kappa B , Ratas , Animales , Masculino , FN-kappa B/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Zinc/farmacología , Acrilamida/toxicidad , Ratas Wistar , Semen/metabolismo , Estrés Oxidativo , Transducción de Señal , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología
8.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590048

RESUMEN

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Asunto(s)
Biomarcadores , Chaperón BiP del Retículo Endoplásmico , Exposición Materna , Estrés Oxidativo , Ácidos Ftálicos , Placenta , Humanos , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/orina , Femenino , Estrés Oxidativo/efectos de los fármacos , Embarazo , Masculino , Placenta/efectos de los fármacos , Placenta/metabolismo , Biomarcadores/orina , Estudios Prospectivos , Adulto , Exposición Materna/efectos adversos , Factores Sexuales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Estudios de Cohortes
9.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426932

RESUMEN

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Asunto(s)
Acné Vulgar , Saponinas , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lipopolisacáridos/efectos adversos , Saponinas/farmacología , Saponinas/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Bacterias Gramnegativas/metabolismo , Acné Vulgar/tratamiento farmacológico , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo
10.
Cells ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474340

RESUMEN

The enzyme heme oxygenase-1 (HO-1) is pivotal in reproductive processes, particularly in placental and vascular development. This study investigated the role of HO-1 and its byproduct, carbon monoxide (CO), in trophoblastic spheroid implantation. In order to deepen our understanding of the role of HO-1 during implantation, we conducted in vivo experiments on virgin and pregnant mice, aiming to unravel the cellular and molecular mechanisms. Using siRNA, HO-1 was knocked down in JEG-3 and BeWo cells and trophoblastic spheroids were generated with or without CO treatment. Adhesion assays were performed after transferring the spheroids to RL-95 endometrial epithelial cell layers. Additionally, angiogenesis, stress, and toxicity RT2-Profiler™ PCR SuperArray and PCR analyses were performed in uterine murine samples. HO-1 knockdown by siRNA impeded implantation in the 3D culture model, but this effect could be reversed by CO. Uteruses from virgin Hmox1-/- females exhibited altered expression of angiogenesis and stress markers. Furthermore, there was a distinct expression pattern of cytokines and chemokines in uteruses from gestation day 14 in Hmox1-/- females compared to Hmox1+/+ females. This study strongly supports the essential role of HO-1 during implantation. Moreover, CO appears to have the potential to compensate for the lack of HO-1 during the spheroid attachment process. The absence of HO-1 results in dysregulation of angiogenesis and stress-related genes in the uterus, possibly contributing to implantation failure.


Asunto(s)
Hemo-Oxigenasa 1 , Placenta , Embarazo , Femenino , Ratones , Animales , Hemo-Oxigenasa 1/metabolismo , Placenta/metabolismo , Línea Celular Tumoral , 60489 , Útero/metabolismo , ARN Interferente Pequeño/metabolismo , Expresión Génica
11.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493696

RESUMEN

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bleomicina/efectos adversos , Hemo-Oxigenasa 1/metabolismo , Antioxidantes/farmacología , beta Catenina/metabolismo , PPAR gamma/metabolismo , Óxido Nítrico/metabolismo , Pulmón/patología , Fibrosis , Arginina/uso terapéutico
12.
Theriogenology ; 220: 96-107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503100

RESUMEN

Successful male reproduction depends on healthy testes. Autophagy has been confirmed to be active during many cellular events associated with the testes. It is not only crucial for testicular spermatogenesis but is also an essential regulatory mechanism for Sertoli cell (SCs) ectoplasmic specialization integrity and normal function of the blood-testis-barrier. Hypoxic stress induces oxidative damage, apoptosis, and autophagy, negatively affecting the male reproductive system. Cryptorchidism is a common condition associated with infertility. Recent studies have demonstrated that hypoxia-induced miRNAs and their transcription factors are highly expressed in the testicular tissue of infertile patients. Heme oxygenase 1 (HO1) is a heat-shock protein family member associated with cellular antioxidant defense and anti-apoptotic functions. The present study found that the HO1 mRNA and protein are up-regulated in yak cryptorchidism compared to normal testes. Next, we investigated the expression of HO1 in the SCs exposed to hypoxic stress and characterized the expression of key molecules involved in autophagy and apoptosis. The results showed that hypoxic stress induced the upregulation of autophagy of SCs. The down-regulation of HO1 using siRNA increases autophagy and decreases apoptosis, while the over-expression of HO1 attenuates autophagy and increases apoptosis. Furthermore, HO1 regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. These results will be helpful for further understanding the regulatory mechanisms of HO1 in yak cryptorchidism.


Asunto(s)
Enfermedades de los Bovinos , Criptorquidismo , Hemo-Oxigenasa 1 , Animales , Bovinos , Masculino , Apoptosis , Autofagia , Enfermedades de los Bovinos/metabolismo , Criptorquidismo/metabolismo , Criptorquidismo/veterinaria , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
13.
Microbiol Spectr ; 12(4): e0322023, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441979

RESUMEN

Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)ß/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCß/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Hemo-Oxigenasa 1 , Caballos , Animales , Ratones , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Biliverdina/farmacología , Transducción de Señal , Replicación Viral
14.
FASEB J ; 38(6): e23572, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38512139

RESUMEN

Asthma is characterized by airway remodeling and hyperreactivity. Our earlier studies determined that the nitric oxide (NO)-soluble guanylyl cyclase (sGC)-cGMP pathway plays a significant role in human lung bronchodilation. However, this bronchodilation is dysfunctional in asthma due to high NO levels, which cause sGC to become heme-free and desensitized to its natural activator, NO. In order to determine how asthma impacts the various lung segments/lobes, we mapped the inflammatory regions of lungs to determine whether such regions coincided with molecular signatures of sGC dysfunction. We demonstrate using murine models of asthma (OVA and CFA/HDM) that the inflamed segments of these murine lungs can be tracked by upregulated expression of HO1 and these regions in turn overlap with regions of heme-free sGC as evidenced by a decreased sGC-α1ß1 heterodimer and an increased response to heme-independent sGC activator, BAY 60-2770, relative to naïve uninflamed regions. We also find that NO generated from iNOS upregulation in the inflamed segments has a higher impact on developing heme-free sGC as increasing iNOS activity correlates linearly with elevated heme-independent sGC activation. This excess NO works by affecting the epithelial lung hemoglobin (Hb) to become heme-free in asthma, thereby causing the Hb to lose its NO scavenging function and exposing the underlying smooth muscle sGC to excess NO, which in turn becomes heme-free. Recognition of these specific lung segments enhances our understanding of the inflamed lungs in asthma with the ultimate aim to evaluate potential therapies and suggest that regional and not global inflammation impacts lung function in asthma.


Asunto(s)
Asma , Hemo-Oxigenasa 1 , Hemo , Animales , Humanos , Ratones , Alérgenos , Hemo-Oxigenasa 1/metabolismo , Inflamación , Óxido Nítrico , Guanilil Ciclasa Soluble
15.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548187

RESUMEN

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Barrera Hematoencefálica , Hemo-Oxigenasa 1/metabolismo , Edaravona/farmacología , Ratas Sprague-Dawley , Isquemia Encefálica/patología , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Reperfusión , Daño por Reperfusión/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
16.
Phytomedicine ; 127: 155466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461764

RESUMEN

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Asunto(s)
Hemo-Oxigenasa 1 , Enfermedades Neuroinflamatorias , Humanos , Hemo-Oxigenasa 1/metabolismo , Depresión/tratamiento farmacológico , Hemo Oxigenasa (Desciclizante)/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo
17.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485340

RESUMEN

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Asunto(s)
Hemo-Oxigenasa 1 , Microglía , Animales , Ratones , Hemo-Oxigenasa 1/metabolismo , Microglía/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción de Prevención , Citocinas/metabolismo , Interleucina-6/metabolismo , Conducta Social , Tolerancia Inmunológica , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473826

RESUMEN

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Asunto(s)
Micotoxinas , Zearalenona , Humanos , Femenino , Animales , Ovinos , Zearalenona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo , Antioxidantes/farmacología , Micotoxinas/metabolismo , Apoptosis
19.
Int J Cardiol ; 404: 131972, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490272

RESUMEN

BACKGROUND: The association between malnutrition and cardiac dysfunction has been reported. Heme oxygenase (HO)-1 played protective roles in the animals functioning as a myocardial infarction, heart failure, or cardiomyopathy model. We hypothesized that the administration of HO-1 inducer, cobalt protoporphyrin (CoPP) reduces oxidative stress and ameliorates cardiac systolic dysfunction in long-term fasting mice. METHODS: C57BL/6 J mice were classified into three groups: fed mice (fed group), 48-h fasting mice with a single intraperitoneal injection of the corresponding vehicle (fasting group), and 48-h fasting mice with a single intraperitoneal injection of 5 mg/kg CoPP (CoPP group). RESULTS: The fasting group showed a significant increase in heme and 4-hydroxy-2-nonenal (4HNE) protein in the heart tissue, and reduced left ventricular ejection fraction (LVEF) when compared with the fed group. The CoPP group showed significantly increased protein levels of nuclear factor-erythroid 2-related factor 2 and HO-1, and increased mRNA expression levels of HO-1, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, forkhead box protein O1, sirtuin-1, cyclooxygenase 2, and superoxide dismutase 2, and reduced levels of heme and 4HNE protein when compared with the fasting group. LVEF were significantly higher in the CoPP group than in the fasting group. CONCLUSIONS: Administration of CoPP reduced heme accumulation and oxidative stress, and ameliorated cardiac systolic dysfunction in long-term fasting mice. This study suggests that heme accumulation may be associated with impaired cardiac function induced by long-term fasting and that HO-1 may be a key factor or therapeutic target.


Asunto(s)
Hemo-Oxigenasa 1 , Infarto del Miocardio , Protoporfirinas , Ratones , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Ratones Endogámicos C57BL , Hemo , Ayuno , Hemo Oxigenasa (Desciclizante)/metabolismo
20.
Phytomedicine ; 126: 155186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387272

RESUMEN

BACKGROUND & AIMS: The effect fraction of Bletilla striata (Thunb.) Reichb.f. (EFBS), a phenolic-rich extract, has significant protective effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI), but its composition and molecular mechanisms are unclear. This study elucidated its chemical composition and possible protective mechanisms against LPS-induced ALI from an antioxidant perspective. METHODS: EFBS was prepared by ethanol extraction, enriched by polyamide column chromatography, and characterized using ultra-performance liquid chromatography/time-of-flight mass spectrometry. The LPS-induced ALI model and the RAW264.7 model were used to evaluate the regulatory effects of EFBS on oxidative stress, and transcriptome analysis was performed to explore its possible molecular mechanism. Then, the pathway by which EFBS regulates oxidative stress was validated through inhibitor intervention, flow cytometry, quantitative PCR, western blotting, and immunofluorescence techniques. RESULTS: A total of 22 compounds in EFBS were identified. The transcriptome analyses of RAW264.7 cells indicated that EFBS might reduce reactive oxygen species (ROS) production by inhibiting the p47phox/NADPH oxidase 2 (NOX2) pathway and upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Both in vitro and in vivo data confirmed that EFBS significantly inhibited the expression and phosphorylation of p47phox protein, thereby weakening the p47phox/NOX2 pathway and reducing ROS production. EFBS significantly increased the expression of Nrf2 in primary peritoneal macrophages and lung tissue and promoted its nuclear translocation, dose-dependent increase in HO-1 levels, and enhancement of antioxidant activity. In vitro, both Nrf2 and HO-1 inhibitors significantly reduced the scavenging effects of EFBS on ROS, further confirming that EFBS exerts antioxidant effects at least partially by upregulating the Nrf2/HO-1 pathway. CONCLUSIONS: EFBS contains abundant phenanthrenes and dibenzyl polyphenols, which can reduce ROS production by inhibiting the p47phox/NOX2 pathway and enhance ROS clearance activity by upregulating the Nrf2/HO-1 pathway, thereby exerting regulatory effects on oxidative stress and improving LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Humanos , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , NADPH Oxidasa 2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Transducción de Señal , Estrés Oxidativo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...